ChatGPT何以震撼全球?中国AI圈的反思与行动之路

文心一言 2年前 (2023) lida
56 0 0

文章主题:关键词:ChatGPT, 人工智能, 差距, 技术创新

666ChatGPT办公新姿势,助力做AI时代先行者!

ChatGPT火了,中国人工智能圈有点上火

文|数智前线 赵艳秋 徐鑫

编辑|周路平

春节前,人工智能组织OpenAI推出的大模型ChatGPT,在国内业界引起了不小的轰动。

🌟认知迭代,ChatGPT引领新潮流🔥每六载人工智能便掀起浪潮,上回AlphaGO震撼全球,如今ChatGPT接力,其影响力不容小觑🔍。这次,不仅是技术突破的见证,更是消费者参与度剧增的里程碑🌈。短短一个月,全球百万用户争相试用,体验翻天覆地,AI的自传播效应前所未见💥。它正以一种前所未有的方式,颠覆着我们的认知和生活方式,让我们期待未来AI如何继续引领创新风暴🌬️。

🎉 ChatGPT震撼登场,国内业界热议翻新!🚀面对这款人工智能巨擘带来的颠覆性体验,我们不禁惊叹之余,更需深入剖析与学习。🤔 从ChatGPT的闪耀光芒中,我们看到了什么?是技术的飞跃,还是创新思维的缺失?国内企业正面临一场无声的挑战,亟待找准自身的定位和改进路径。🔍差距在哪里?如何正视并弥补?这是每一个从业者必须面对的问题。中国的机会藏匿在何处?或许,答案就隐藏在对新技术的拥抱与对传统优势的坚守中。🌱让我们以开放的心态,积极的态度去迎接这场变革,抓住技术迭代带来的机遇,同时不失本土特色,为中国数字化进程添砖加瓦。💪SEO优化提示:ChatGPT、国内业界反思、创新机会、技术差距、本土优势、数字化进程

🎉 ChatGPT引领潮流,行业焕发新生!🌟 数智前线获悉,这位业界专家分享了令人振奋的消息:随着这款人工智能巨擘的崛起,沉寂已久的市场瞬间活跃起来,曾经的萎靡不振如今已烟消云散,取而代之的是充满生机与活力的景象。🌈ChatGPT犹如一针强心剂,为行业注入了新的活力和创新驱动力,打破了过去那种技术更新换代带来的空洞感。它不仅带动了讨论热度,还推动了实际应用的广泛普及,让创新思维得以迅速传播和实践。💻曾经那些因技术瓶颈而困扰的企业,如今看到了希望的曙光,他们重新振作,积极应对挑战,寻求突破。💼总的来说,ChatGPT的到来犹如一场春风,不仅让行业人士重拾信心,也让潜在用户对技术发展有了更深的认识和期待。未来,我们有理由相信这个领域将更加繁荣,创新的脚步永不停歇!🚀

01、差距在哪里?

🎉 ChatGPT的发布引发了业内热烈讨论,一位百度内部资深人士对此态度微妙,他表示对这个话题并无太多热情,言语中透露出复杂的情绪。而一位初创人工智能公司的创始人也深感震撼,他直言,ChatGPT的表现确实亮眼,让他既兴奋又困惑,甚至因此失眠。尽管如此,他也承认,与ChatGPT的先进模型相比,技术上还有明显的差距。🚀

🌟当同样的问题摆在面前,ChatGPT以其卓越的智能表现脱颖而出。相较于国内某厂商的大模型,ChatGPT在回答的连贯性和完整性方面展现出无可比拟的优势。它提供的答案思路清晰,逻辑性强,仿佛是精心设计的,而非简单拼凑。🌈而国内大模型的回答,则显得凌乱且不切题,充满了随机和错误的元素。速度上,ChatGPT更是遥遥领先,每一步都快人一步。🔥这不仅是技术上的较量,也是对高质量响应和服务的考验。无疑,ChatGPT以其强大的实力,在这场对话中占据了显著的优势。💡

🌟【技术巨头视角】ChatGPT挑战者尚未诞生?聊聊数字人领域的未来之路🔍🚀特看科技CEO乐乄坚信,全球范围内,尚无能与ChatGPT分庭抗礼的巨擘模型,行业普遍认为,两者间的差距至少两年之遥。💡对于国内的数字人研发者来说,不必急于求成,找准定位,稳健前行才是当务之急。\nalready,追赶的脚步不应被忽视,而是要以创新和持续努力为引领,逐步缩小与国际先进水平的差距。🎯在技术的海洋中,每一步都至关重要,早日跻身全球前列,才能在人工智能的浪潮中立于不败之地🌊欲了解更多关于数字人领域的发展动态和潜在机遇,敬请关注我们后续的专业解析!📚#ChatGPT挑战# #数字人追赶# #技术创新未来

虽然一些人工智能资深人士认为,在ChatGPT所涉及的技术上,中美是“平级”的,但华为诺亚方舟实验室语音语义首席科学家刘群,在黄大年茶思屋的讨论中坦承,中国在技术上还是有差距的。其中一个是基础模型本身的差距,虽然我们训练了很多万亿模型或者是几千亿的模型,但训练的充分程度,是远远不够的。“我估计到现在为止,没有哪个模型能吃GPT那么多数据。”

清华大学计算机科学与技术系长聘副教授黄民烈提到,在GPT-3之后,OpenAI所有的模型都没有开源,但它提供了API调用。在这个过程中,它干了一件事,就是建立起了真实的用户调用和模型迭代之间的飞轮,它非常重视真实世界数据的调用,以及这些数据对模型的迭代。当然,在此过程中,它也养活了美国一大帮创业公司,建立了一个生态。

“你看我们国内的大模型研究,是A公司训练了一个,B公司也训练了一个,打个广告就完了,模型开源,你爱用不用。至少目前还没看到一家比较好的公司,把数据和模型的飞轮完整转起来。所以,我觉得这是我们赶超ChatGPT的难点。”一位业内人士坦言。

除此之外,业界人士都提到了算力问题。由于GPU芯片等问题,在一定程度上,国内算力已经到瓶颈了了。即使国内头部公司,从算力上跟谷歌等相比,差距也是比较明显的。

从数据质量来说,整个互联网的中文数据质量,相比于英文还是有明显差距。“我们可能要想办法,做中英文不同语言之间的数据互补。”有业内人士称。

此外,几乎所有受访人士都提到了OpenAI这家人工智能组织,所体现的纯碎创新精神和长期主义。“其实从原理和方法看,他们所做的东西业界都是了解的,倒没有说什么是美国做得了、我们做不了的。”云知声董事长梁家恩对数智前线说,但像OpenAI和DeepMind,他们可能是业界唯二的两家机构,无论在创新性、投入、决心,还是在顶尖人才储备上,都是一如既往坚持的。“我们看到的是成功,但里面可能已经有很多失败的尝试。”

有资深AI从业者认为,在看不到前景和没有明显效果的阶段,OpenAI非常坚定地做了投入,相反国内倾向于在技术出现突破后,快速追随。“国内大家第一步想的是,我们现在怎么用起来,但在不能用的时候,人家就在长期投入。”

“这件事其实是值得我们学习的,我们真的需要有足够多的钱,有这么一帮热血的人才,能够在一个方向上这样持续积累发力,我觉得这是一个非常必要的条件。”黄民烈称。

最近一段时间,业界也在讨论中国企业能否超越。容联云AI研究院院长刘杰告诉数智前线,围绕业务,尤其是国内的场景,是有超越机会的。在局部应用中开始超越,这也是业界的共识。

02、对中国人工智能界有何启发

ChatGPT是一种大模型。在它推出之前,国内外实际上已有不少大模型。相比其他大模型,它有了业界意料之外的突破,也给国内业界带来启发。

首先,ChatGPT有一个非常强大的技术底座,也就是InstructGPT模型。但这个模型的论文刚发出来时,没有引起特别大的反响,大家觉得也就是 OpenAI的一篇论文而已。梁家恩也告诉数智前线,此前,GPT与BERT模型路线一直在竞争,2018年时BERT模型先赢了,但GPT模型路线一直没放弃,模型参数和数据规模越做越大,最终结合人工反馈增强学习(RLHF),在ChatGPT上取得了重大突破,效果上反超了BERT模型路线。因此,业内公司正在关注投入更大精力到GPT模型路线上,技术路线交替竞争,在业内是常态。

其次,ChatGPT引入了强化学习机制。容联云刘杰告诉数智前线,ChatGPT不仅仅像以前的大模型,利用了没有人工标注的数据去学习,还在新版本上引入了人工标注的数据,通过人类的反馈,有针对性地进行优化。“这是ChatGPT一个重要的进展,给了我们很大的启发。”

“这是它核心的一点。”华为终端云服务搜索与地图BU总裁赵世奇称,“今天,我们的模型越来越大,它就像一股洪荒之力,有人会害怕未来它会不会控制人类?但引入了这种强化学习机制后,就相当于给洪荒之力一个引导,让大模型的产出朝着可控的方向走,生成符合预期的结果。”比如,你去问它一些伦理安全的敏感话题,它都能答得很好。

这里的难度是建立怎样的强化学习机制。此前,在下围棋的AI中,强化学习是用胜负做反馈。但对于ChatGPT如此开放的系统,是没有明确的反馈机制的。黄民烈称,过去大家也尝试了强化学习机制,但很多都不太成功。ChatGPT在这件事上取得了突破。

第三,它在数据质量和多样性上非常讲究。OpenAI雇佣了一个数十人的数据团队,其实ChatGPT强化学习的数据量并不大,但对数据多样性、标注体系都有精巧的设计,让数据发挥出了强大的作用。业内认为,这确实是值得我们借鉴的地方。

当然,ChatGPT也有明显的不足。大家公认的,是它善于一本正经地胡说八道。刘杰告诉数智前线,ChatGPT是一个黑盒计算,当下在内容的可信性和可控性上有一定局限。“我们要给它足够正确的知识,再引入知识图谱这类知识管理和信息注入技术,还要限定它的数据范围和应用场景,使得它生成的内容更为可靠,这是我们在做的。”

ChatGPT在AI的技术路线和训练方式上的变革,让人关注它对产业带来的改变。特看科技CEO乐乘预计,很多单点环节里,用不用大模型会有天壤之别。没用大模型,只基于自己上一代小模型做产品的企业,跟应用了大模型且还做了业务垂直化的公司,将无法竞争。

多名创业者谈及,这两年创业市场垂头丧气,所有人都在探寻能够大幅度提升生产力的技术是什么。“ChatGPT其实提供了一种新的范式。垂头丧气、青黄不接的状态可能会成为过去。这个领域出几家千亿级别的公司是完全有可能的。”乐乘说。

03、中国企业的动作

ChatGPT推出后,很多人在讲谷歌、百度的焦虑。但大多数中国业内人士认为,目前ChatGPT还是一个对AI技术范式的探索,它并不能代替搜索。ChatGPT当下一个很大的弊端是无法实时获取互联网信息。由于它只是一个端到端的生成模型,能够自我构造虚假答案,这些都是它替代搜索的障碍。而如果以目前每一条几美分的成本来看,它会让商业搜索引擎公司入不敷出。

它作为搜索引擎的补充是有机会的,因为搜索引擎也讲求“所问即所答”,但这还有一个发展过程。

刘杰认为,ChatGPT主要的产业化路径,目前可能性比较大的首先还是在C端。由于ChatGPT展现出的大模型的创造性,以及对长篇上下文的理解能力,它可能会聚焦于一些开放性、创意性和通用性的任务上。

不过,中国企业在行业市场的探索已经开启。比如,在智能客服领域,云蝠智能CEO魏佳星告诉数智前线,上个月他们在一些场景尝试引入ChatGPT来做外呼的Demo测试,调用ChatGPT来回复客户的问题。

“在智能客服领域应用这项技术,核心点在大模型的NLP(自然语言处理)能力和此前企业里已有的NLP之间怎么结合。”魏佳星说。例如帮助顺丰去做回访的快递通知体系,是基于几个标准动作而进行,在这个封闭条件下应该优先企业已有的技术,满足客户当下的核心需求。

在这个需求之外,此前智能客服中的AI工具,在泛化能力和通用性方面存在一定的缺陷,语料信息不充分时,AI没办法对问题做出反应,ChatGPT大模型能够补全这方面的能力。魏佳星反馈,云蝠智能外呼的Demo测试效果较好。在其他行业里这项技术可能仍处于娱乐状态,但在智能客服领域,ChatGPT已具备商用潜力。

从事通讯及数字化服务的上市企业容联云,从2021年围绕着人机智能对话,做核心技术和产品研发,比如智能客服。目前,在研发与ChatGPT类似的人工智能内容生成产品。

但就模型的规模,刘杰有不同的看法。“ChatGPT的优势是它的大带来的,但在应用落地上,由于它过大,也带来了挑战和局限。”他告诉数智前线,“脱离场景去谈大和小是没有意义的。在特定应用场景、特定条件约束下、在特定的数据上,去训练规模适宜的模型,是我们努力的目标。”

刘杰还称,AI是一个链条比较长的产品技术,如果没有建立一个好的反馈机制,在部署运营阶段,从最前线发现的问题,就很难有效定位解决,所以要让模型去持续成长和优化,“它不是静态的,不是交付了就不再管它。”

云知声梁家恩告诉数智前线,他们一直密切跟进业内最前沿的算法,是最早把BERT和GPT2模型方法用到实际业务系统的团队之一,“现在相当于是把基于BERT的技术框架做个升级,目前已纳入云知声今年的技术升级目标规划中。”梁家恩说,ChatGPT的优势是意图理解、上下文对话管理和高质量内容生成,技术升级后,预计会带来显著的体验提升。

与其他企业一样,云知声的目标是先走通,之后在既有的业务比如在IoT智能语音交互对话,以及医疗行业应用中落地。梁家恩也提到了模型的规模问题,考虑商业化成本,实用模型的参数量最终可能要压到10亿量级。

商汤科技数字文娱事业部总经理栾青告诉数智前线,团队更多是利用GPT等生成式内容进行短视频等创作,让大家在创作的过程当中,把生产效率提升,“这是我们的核心点”。同时,商汤已训练了超过300亿量级超大基模型。

出门问问创始人李志飞则告诉数智前线,出门问问从2019年底开始做生成式应用,2020年GPT-3出来后一直在跟踪大模型。目前发力的一个行业应用是写文案。

某游戏人工智能的资深开发者告诉数智前线,这项技术在游戏的用户互动环节和制作环节能看到应用前景。比如用户和NPC(一种角色)互动对话时调用,由于ChatGPT对自然语言的优秀理解能力,用户和NPC互动的开放性能大幅提升。另外在制作环节里,应用ChatGPT,可通过关键词生成故事线,能给策划在剧情走向设计时提供参考。

另外,在数字人领域,特看科技CEO乐乘告诉数智前线,大模型让数字人的内容生产和交互方式发生了变化。

在没有引入大模型之前,数字人说话和行动基本要靠真人行为去驱动。有了大模型之后,内容的输出可以通过大模型来完成。以直播带货为例,数字人公司先给本地生活、知识付费和直播商家等建立一个数字人的虚拟主播形象,而后可以将大模型接入,让大模型辅助撰写数字人直播带货的话术和脚本,“未来在我们关注的泛生活和电商赛道,可能有30%内容能够通过大模型生成来完成。”乐乘说。

04、ChatGPT在行业落地难

不过,业界资深人士提出,当下ChatGPT在行业里要真正落地还面临困难。

“商业模型上跑不通。”魏佳星对数智前线说。ChatGPT目前调用一次的费用在几美分,智能客服一天的问答场景,通常可能要调用几十万次。“我们一通电话收费才1.2毛,利润可能也就2分钱,现在的成本使得它根本跑不起来。“魏佳星认为,当这项产品的调用成本降到1分钱时,行业里可能就会大范围使用起来。

游戏行业的开发者们也坦言,调用ChatGPT的成本和它当下所带来的回报可能并不成正比。几美分只是调用费用,还不算运营费用。“没有一个老板能接受,NPC回复一句话要花掉几毛钱,即使它说得再好。”而用户的游戏体验是个系统工程,文本互动只是其中的一环。当下即使有厂商愿意不顾高成本使用ChatGPT,最终的用户体验也依然可能无法有质的飞跃。

在游戏制作环节,ChatGPT可能也只能作为策划和游戏设计环节的参考,“乍看中规中矩要素齐全,但细品会发现缺少灵魂,在观念性的创造上仍有待提升”。

不过,乐乘对ChatGPT的成本问题相对乐观。OpenAI公司自己也是初创团队,没有那么有钱。随着竞争加剧,大模型会像水电煤一样,是大家都用得起的状态。

刨除成本考量,在对企业的落地中,ChatGPT这类大模型,也有典型的问题。

容联云刘杰举例,首先,很多客户有私有化部署要求,但这些模型非常大,对资源要求高,当前不太可能实现私有化部署。其次,这些大模型在一些特定行业或特定任务上,专业性是欠缺的,需要去适配。而对于ChatGPT这类非开源的大模型应用来说,对它在下游任务上的微调,如何兼顾成本、灵活性和数据隐私则是一个关键问题。这些问题也造成,这种模型还没有走到服务企业级客户,尤其是大型企业客户那一步。

除此之外,现在人工智能技术都在与企业的核心业务流程做深度融合,而像ChatGPT这个基于大模型的应用服务,更像一个独立的外挂,如何深度绑定,这也成为企业使用它的一个待解决问题。

业界人士期望ChatGPT未来在商业模式上有更好的呈现方式。目前ChatGPT对外提供的API还非常单一,影响了应用。

05、创业公司会被ChatGPT吞噬吗?

大家在期待OpenAI的下一个版本。GPT-3大模型发布于2020年, ChatGPT则基于它的改进版本创建。此前盛传,GPT-4将于今年一季度或下半年推出,不过OpenAI的首席执行官 Sam Altman在1月份回应,没有具体的时间表。

一些创业者已经开始关注到,随着大模型被越来越多地应用,细分赛道的创业公司在大模型的强大推力加持下,如何寻找自己的生存空间。

它涉及到两点,首先是如何深化对垂直行业的认知,真正把大模型融入到企业的创新业务流中。特看科技乐乘认为,垂直行业的小模型,考验的是创业公司对垂直行业的know-how。创业公司需要基于对行业的认知深度,采集足够多的场景数据,并基于这些细分数据更好服务用户。用户越多,反馈越多,最终形成数据反馈的闭环。

创业公司在小模型的竞争终局比拼的是,谁家的小模型跟业务结合得紧,且能解决好跟大模型结合的问题。

另一点是,大模型被充分使用、喂得很肥后,是否会成为最强大的AI,最终吞噬细分赛道上小创业公司的发展空间。

海外初创公司Jasper的命运颇能反映这种境况。Jasper是一家基于GPT-3大模型来生成营销文案的AI服务商,去年10月它宣布以15亿美元的估值获得1.25亿美元A轮融资。一个月后,基于GPT-3改进版本搭建的ChatGPT大火,智能程度更泛化的ChatGPT彻底盖过了Jasper的风头。

“对创业者而言,在充分利用已有大模型的情况下,也要尽可能要把小模型的闭环数据保护好。”特看科技乐乘说,这也是他们公司未来会重点攻克的方向。

不过,当下底层大模型还在高速迭代阶段,行业内都在等 GPT-4 出来。乐乘认为,从GPT-3到GPT-4的变迁,很像移动互联网早期 iPhone 1和 iPhone4 阶段iOS的升级速度,它的发展速度也许会超出大家的认知。

一些人士猜测, GPT-4将在多模态上有进展,也就是会引入视频、音频等。国内某游戏人工智能的资深开发则告诉数智前线,他们关注的是下一代的大模型能不能在理解上下文上有突破。“如果大模型能让人工智能打赢辩论赛,那么它的能力就算是有质的突破了。”

“短期内可能大家会高估这个东西,但长期可能有很多人会低估这个东西。”这名游戏AI资深开发评价。返回搜狐,查看更多

责任编辑:

ChatGPT何以震撼全球?中国AI圈的反思与行动之路

ChatGPT何以震撼全球?中国AI圈的反思与行动之路

AI时代,掌握AI大模型第一手资讯!AI时代不落人后!

免费ChatGPT问答,办公、写作、生活好得力助手!

扫码右边公众号,驾驭AI生产力!

版权声明:lida 发表于 2023年5月8日 pm10:30。
转载请注明:ChatGPT何以震撼全球?中国AI圈的反思与行动之路 | ChatGPT资源导航

相关文章