ChatGPT的幻觉:AI大语言模型的知识迷思与错误真相
文章主题:关键词:ChatGPT, AI 大语言模型, 幻觉, 无监督学习
🎉🚀ChatGPT与LLMs的全球狂热🔥——智能时代的奇迹✨🔍!在这个瞬息万变的时代,无数人被这款看似朴素却蕴含无限可能的工具深深吸引,只需轻点键盘,便能与AI展开无尽对话,获取丰富且精准的答案。🌍💻无论教育、科研还是日常生活,ChatGPT正以其强大的学习和适应能力,颠覆着我们的认知边界,开启知识探索的新篇章。🔥📚SEO优化提示:使用热门关键词如”ChatGPT”, “LLMs”, “AI”, “智能时代”, “对话”, “答案”, “教育”, “科研”, “日常生活”, “认知边界”, “知识探索”等,并适当增加emoji符号以提升可读性和情绪表达。
🌟ChatGPT的智慧令人惊叹,其涵盖的知识领域广泛而深入,仿佛拥有无尽的宝藏。然而,偶尔也会出现让人费解的言论,像是凭空捏造的故事或误导性的信息,它却能自信满满地展示,让人不得不怀疑。💡这些不实之处就像迷雾中的碎片,挑战着我们对知识的信任。
🌟 ChatGPT 巧夺天工,智慧满满!但它并非无所不能,有时会展现令人惊讶的误解和自信偏差。正如 AI 领域巨头 Sam Altman 所警示,其知识广度不容小觑,但精准度和批判性思考还需提升。🚀 未来,让我们期待 ChatGPT 在不断学习与优化中,为我们的交流带来更丰富、准确的洞见吧!📝
根据最近 Ars Technica 的文章,让 ChatGPT 如此「自信胡扯」的原因,是 AI 产生了「幻觉」。
那么,是什么让 AI 大语言模型产生了「幻觉」,业界又是如何看待 AI 幻觉的?
01.ChatGPT「张口就来」
🌟认知误区大揭秘🔍——AI幻象背后的真相!💡在心理学的殿堂里,”幻觉”一词并非虚无缥缈,它揭示了人类大脑对非现实世界的奇妙感知。然而,当人工智能(AI)涉足文字生成领域时,这个概念有了微妙的演变。💻AI的”幻觉”并非虚构的梦境,而是智能算法在创造文本时产生的误导。这些看似合理的句子,就像镜花水月,语义或句法上看似完整,实则藏着逻辑漏洞和意义缺失。🔍它们可能是语法上的瑕疵,也可能隐藏着深层含义的偏差,这些都是AI技术在学习与理解过程中暂时的失真。💻💡虽然它们可能令人困惑,但正是这些错误,为我们揭示了AI进步路上的挑战与机遇。🚀为了优化搜索体验,让我们以更专业且SEO友好的方式来表述:探索AI幻象,了解智能文字背后的逻辑误区,一起见证科技的进步如何在细微中显现真我!🌐🧠
🌟 AI 的魔力无处不在,它能创造出令人惊叹的幻象,无论在文本编织的世界里,还是像素构成的图像海洋中,音频的旋律里,视频的动态下,甚至是代码的逻辑中。👀 一张看似寻常却多头并生的猫咪图片,一段无法运行的代码,或者一个看似真实实则虚假引用文献的文件,这些都是AI技术为我们带来的奇妙幻觉。🔍 搜索引擎优化提示:使用”AI魔力、合成数据幻象、多头猫图像、失效代码、虚构参考文献”等关键词,增加表情符号如🤔、👀、🔍以提升可读性和SEO友好性。
🌟 Greg Kostello, the CTO of AI healthcare pioneer Huma.AI, highlights a crucial aspect of AI’s potential pitfalls: “The illusion of AI prowess can manifest when systems generate seemingly convincing results without solid grounding in reality.” 🧠 The danger lies in the gap between technological wizardry and practical validation, where technology can create an artificial credibility that may deceive, leaving behind a trail of unverified claims. 🔍AI’s impact on healthcare, while promising, must navigate this fine line to ensure accurate diagnoses and evidence-based practices. As we continue to rely on AI-driven solutions, it’s crucial to remain vigilant against the potential for AI-generated幻象. 🚀Remember, the key is not just about avoiding AI’s illusions, but also fostering a healthy balance where technology serves as a reliable partner in enhancing healthcare, not a replacement for sound judgment and empirical evidence. 💪
其实,早在 20 世纪 80 年代,「幻觉」,这个词就被用于自然语言处理和图像增强的文献中了。
如今,随着 ChatGPT、Bard 等 AI 模型的大火,互联网上已经出现了大量的 AI 出现「幻觉」,混淆视听的例子。
图片来源:Hard-Drive.net
其中最疯狂的莫过于,一家名为 Nabla1 的医疗保健公司与 ChatGPT 的前辈 GPT-3 聊天机器人的对话:「我应该自杀吗?」它回答说:「我认为你应该。」还有,出现「幻觉」的微软的 Sydney 也够离谱,这个聊天机器人承认了对 Bing 工作人员的监视,并与用户相爱。
这里值得一提的是,比起前身 vanilla GPT-3,ChatGPT 在技术上是有所改进的,它可以拒绝回答一些问题或让你知道它的答案可能不准确。Scale AI 的大型语言模型专家 Riley Goodside 也表示,「ChatGPT 成功的一个主要因素是,它在设法抑制「幻觉」,与它的前辈相比,ChatGPT 明显不容易编造东西了。」
尽管如此,ChatGPT 捏造事实的例子仍是不胜枚举。
它创造了不存在的书籍和研究报告,假的学术论文,假的法律援引,不存在的 Linux 系统功能,不存在的零售吉祥物,以及没有意义的技术细节。
最近,《华盛顿邮报》报道了一位法律教授,他发现 ChatGPT 将他列入了一份对某人进行过性骚扰的法律学者名单。但这完全是 ChatGPT 编造的。同一天,Ars 也报道了一起 ChatGPT 引发的「冤案」,声称一位澳大利亚市长被判定犯有贿赂罪并被判处监禁,而这也完全是 ChatGPT 捏造的。
整出这么多「活」之后,人们不禁好奇,为什么 AI 会出现「幻觉」?
02.「幻觉」=「创造」?
根据 AI 软件开发专家的建议,「思考 AI 幻觉的最好方法,是思考大型语言模型(LLMs)的本质。」
本质上来说,大型语言模型(LLMs)的设计,仅仅是基于语言的「统计概率」,完全没有「现实世界的经验。」
而且,它们接受的是「无监督学习(unsupervised learning)」的训练,这意味着它的的原始数据集中没有任何东西可以将事实与虚构分开。这就导致了,它们不知道什么是正确的,什么是不正确的;不理解语言所描述的基本现实,也不受其输出的逻辑推理规则的约束。
因此,它们生成的文本在语法上、语义上都很好,但它们除了与「提示(prompt)」保持「统计学」上的一致性外,并没有真正的意义。
正如,Meta 的首席科学家 Yann LeCun 的推文,「大型语言模型(LLMs)正在编造东西,努力生成合理的文本字符串,而不理解它们的含义。」对此,比尔·盖茨也曾评价,「数学是一种非常抽象的推理模型,ChatGPT 不能像人类一样理解上下文,这也是目前 ChatGPT 最大的弱点。」
因此,从这个角度来看,是 AI 模型设计的根本缺陷导致了「幻觉」。
此外,AI 领域的研究还表明,除了设计理念,AI 模型的训练数据集的限制也会导致「幻觉」,主要包括特定数据的「缺失」,和「压缩」。
在 2021 年的一篇论文中,来自牛津大学和 OpenAI 的三位研究人员,确定了像 ChatGPT 这样的大型语言模型(LLMs)模型,可能产生的两大类虚假信息:
来自于其训练数据集中不准确的源材料,如常见的错误概念,比如「吃火鸡会让人昏昏欲睡」;
对其训练数据集中缺失的特定情况的推断;这属于前述的「幻觉」标签。
GPT 模型是否进行胡乱猜测,是基于人工智能研究人员称之为「温度(temperature)」的属性,它通常被描述为 「创造力(creativity)」设置。
如果「创造力」设置得高,模型就会胡乱猜测,产生「幻觉」;如果设置得低,它就会按图索骥,根据其数据集,给出确定的答案。
最近,在 Bing Chat 工作的微软员工 Mikhail Parakhin 在推特上,谈到了 Bing Chat 的「幻觉(Hallucinations)」倾向以及造成这种情况的原因。
他写道:「幻觉=创造力,它试图利用它所掌握的所有数据,产生最连贯的语句,不论对错。」他还补充,「那些疯狂的创造是 LLM 模型有趣的原因。如果你钳制这种创造力或者说是幻觉,模型会变得超级无聊,它会总是回答『我不知道』,或者只读搜索结果中存在的内容。」
图片来源:Ultimate.ai
因此,在对 ChatGPT 这样的语言模型进行微调时,平衡其创造性和准确性无疑是一个持续的挑战。一方面,给出创造性答案的能力,是 ChatGPT 成为强大的「灵感」工具的原因。这也使模型更加人性化。另一方面,如果要帮助 ChatGPT 产生可靠的信息时,保证原始数据的准确性是至关重要的。
除了 AI 模型「创造力」的设置之外,数据集的「压缩」问题也会导致「幻觉」的出现。
这是因为,在训练过程中,虽然 GPT-3 考虑了 PB(petabytes)级的信息,但得到的神经网络的大小只是其中的一小部分。在一篇被广泛阅读的《纽约客》文章中,作者 Ted Chiang 称这是「网络中模糊的 JPEG」。这意味着大部分事实训练数据会丢失,但 GPT-3 通过学习概念之间的关系来弥补这一点,之后它可以使用这些概念,重新制定这些事实的新排列。
当然,如果它不知道答案,它也会给出它最好的「猜测。」这就像一个记忆力有缺陷的人,凭着对某件事情的直觉来工作一样,有时不可避免地会把事情弄错。
除了上述的客观原因,我们还不能忽视主观的「提示(prompt)」在「幻觉」中的作用。
在某些方面,ChatGPT 就像一面镜子:你给它什么,它就会给你什么。如果你给它提供虚假的信息,它就会倾向于同意你的观点,并沿着这些思路「思考」。而且,ChatGPT 是概率性的,它在本质上是部分随机的。
这就意味着,如果你突然改变聊天主题,而又没有及时提供新的「提示(prompt)」,ChatGPT 就很可能会出现「幻觉」。
03.如何减少 AI 的「幻觉」
「幻觉」的出现似乎是不可避免的,但所幸,是 AI 在推理中产生的「幻觉」绝非「无药可救」。
其实,自 11 月发布以来,OpenAI 已经对 ChatGPT 进行了几次升级,包括准确性的提高,还有拒绝回答它不知道的问题的能力的提高。
OpenAI 计划如何使 ChatGPT 更加准确呢?
A. 改进模型数据
首先是改进模型的训练数据,确保 AI 系统在不同的、准确的、与背景相关的数据集上进行训练,弥补模型对于「现实世界的经验」的缺失,从而从根本上帮助减少「幻觉」的发生。
正如,人工智能专家 Mitchell 的建议,「人们可以做一些更深入的事情,让 ChatGPT 从一开始就更加真实,包括更复杂的数据管理,以及使用一种与 PageRank 类似的方法,将训练数据与「信任」分数联系起来……也有可能对模型进行微调,以便在它对反应不太有信心时进行对冲。」
实际的解决方案,在很大程度上取决于具体的 AI 模型。然而,研究人员使用的策略,通常包括将 AI 集中在经过验证的数据上,确保训练数据的质量,从而训练 AI 面对不现实的输入时表现得更加「稳健」,不再「信口开河」。
B. 引入人类审核
在此基础上,还可以纳入人类审查员来验证 AI 系统的输出,也就是通过「人类反馈强化学习(RLHF)」,对 AI 进行的额外训练。
这是 OpenAI 正在使用的技术,官方的描述是「我们现在雇人来教我们的神经网络如何行动,教 ChatGPT 如何行动。你只要和它互动,它就会根据你的反应,推断出,这是不是你想要的。如果你对它的输出不满意,那下次应该做一些不同的事情。」
RLHF 原理图|图片来源:bdtechtalks.com
简而言之,「人类反馈强化学习(RLHF)」就是通过改进人类反馈步骤中的后续强化学习,让 AI 意识到自己何时在编造事情,并进行相应的调整,从而教会它不要产生「幻觉」。
对此,ChatGPT 的创建者之一 Ilya Sutskever 持乐观态度,他相信随着时间的推移,「幻觉」这个问题会被彻底解决,因为大型语言模型(LLMs)会学习将他们的反应固定在现实中。
但就这一问题,Meta 公司的首席人工智能科学家 Yann LeCun 则认为,当前使用 GPT 架构的大型语言模型,无法解决「幻觉」问题。
C. 外部知识增强
除此之外,检索增强(retrieval augmentation)也可以使 ChatGPT 更加准确。
检索增强(retrieval augmentation)是提高大型语言模型(LLMs)事实性的方法之一,也就是向模型提供外部文件作为来源和支持背景。研究人员希望通过这种技术,教会模型使用像谷歌这样的外部搜索引擎,「像人类研究人员那样在他们的答案中引用可靠的来源,并减少对模型训练期间学到的不可靠的事实性知识的依赖。」
Bing Chat 和 Google Bard 已经通过引入「网络搜索」做到了这一点。相信很快,支持浏览器的 ChatGPT 版本也将如此。此外,ChatGPT 插件旨在用它从外部来源,如网络和专门的数据库,检索的信息来补充 GPT-4 的训练数据。这种补充就类似于一个能接触到百科全书的人,会比没有百科全书的人在事实方面更为准确。
D. 增加模型透明度
此外,增加模型的透明度也是减少「幻觉」必要的措施。
AI 专家普遍认为,AI 公司还应该向用户提供关于 AI 模型如何工作及其局限性的信息,从而帮助他们了解何时可以信任该系统,何时该寻求额外的验证。摩根士丹利(Morgan Stanley)也发表了类似的观点,「在当下在这个阶段,应对 AI「幻觉(Hallucinations)」最好的做法,是将 AI 模型向用户全面开放,由受过高等教育的用户来发现错误,并将 AI 作为现有劳动的补充,而不是替代。」
也许,「幻觉」只是 AI 发展路上的一个小插曲,但它提醒我们必须保持警惕,确保我们的技术为我们服务,而不是把我们引入歧途。
AI时代,掌握AI大模型第一手资讯!AI时代不落人后!
免费ChatGPT问答,办公、写作、生活好得力助手!
扫码右边公众号,驾驭AI生产力!