ChatGPT专题报告:GPT,大模型多模态应用展望

ChatGPT与PPT 11个月前
30 0 0

(报告出品方:中信证券)

1. ChatGPT通过大模型突破AI瓶颈,GPT-4多模态应用带动商业化加速

概述:ChatGPT为NLP下的AI大模型,性能和使用体验超预期

ChatGPT是自然语言处理(NLP)下的AI大模型,通过大算力、大规模训练数据突破AI瓶颈。2022年11月,OpenAI推 出ChatGPT,ChatGPT基于GPT-3.5,使用人类反馈强化学习技术,将人类偏好作为奖励信号并微调模型,实现有逻辑 的对话能力。

ChatGPT本质上是通过超大的统计语言模型,对词语序列的概率分布进行建模,利用上下文信息预测后续词语出现的概 率分布,其表现的超预期反映了在算力水平提升的情况下大语言模型技术路线的成功,通过对大规模的未标注的文本数据 进行训练,突破了AI发展的技术瓶颈。根据《瞭望》新闻周刊报道,OpenAI为了让ChatGPT的语言合成结果更自然流 畅,使用了45TB的数据、近1万亿个单词来训练模型,训练一次的成本高达千万美元,一个月的运营成本需要数百万美元。

概述:OpenAI倾力打造ChatGPT,获得微软有力加持

ChatGPT出自美国AI创业公司OpenAI,是AI大模型领域的领军者。OpenAI在2015年由Sam Altman、Peter Thiel、Reid Hoffman、Elon Musk等人创办。公司成立之初,即确定了包括制造“通用”机器人和使用自然语言的聊天机器人的发展 目标。2019年,OpenAI获得来自微软的10亿美元投资,为Azure云端平台服务开发AI技术。2018年起,OpenAI开始发布 GPT(Generative Pre-trained Transformer)模型,2020年发布GPT-3,可以完成答题、写论文、代码生成等任务,被视 为人工智能竞赛的里程碑事件,并直至ChatGPT的推出引起AI的热潮。

除了NLP领域,OpenAI还在多模态领域取得成就,包括发布了AI图像生成器DALL-E2,对音频转录编辑器Descript、AI笔 记应用Mem等进行投资。

演变:GPT-1—无监督预训练 有监督微调

GPT-1发布于2018年6月,参数量达1.17亿,预训练数据量约5GB。GPT-1包含预训练和微调两个阶段,考虑到自然语言 处理任务中有标签的语料少,GPT-1先在大量的无标签数据上训练语言模型,然后在下游具体任务(如分类、常识推理、 自然语言推理等)的有标签数据集上进行微调。1)在无监督训练中,GPT-1采用Transformer的架构,即标准的语言模型 的目标函数,通过前面的词预测后面的词;2)在有监督训练中,采用标准的分类目标函数,仅需对第一阶段预训练的语 言模型做出很小的结构改变,即可应用于各种下游任务。

GPT-1使用了BooksCorpus数据集来训练语言模型,其中有7000余本未出版的书籍。具体表现上,在有监督学习的12项 任务中,GPT-1在其中9项上的表现优于专门训练的受监督模型。

演变:GPT-2—无监督预训练 多任务学习

GPT-2发布于2019年2月,参数量达15亿,预训练数据量约40GB。GPT-1使用的概率条件模型为p(output|input),GPT-2 使用相同的无监督模型学习多个任务,将概率条件模型修改为p(output|input, task) ,期望模型对不同任务的相同输入产 生不同的输出。此外,GPT-2采取Zero-shot设定,不需要下游任务的标注信息,而是根据给定的指令理解任务。因此 GPT-2的核心思想在于多任务学习。

GPT-2训练的数据集来自社交新闻平台Reddit,共有约800万篇文章,体积超40GB。具体表现上,在8个语言模型任务 中,仅通过Zero-Shot学习,GPT-2在其中7个上领先。GPT-2表明,随着模型容量和数据量增大,GPT模型的潜力仍有望 进一步显现。

展望:GPT-4—此前外界预期参数量变化不大、使用门槛有望降低

GPT-4备受业界期待,训练成本控制有望带动商业潜力的极大增强。ChatGPT的突出表现使得外界对GPT-4十分期待, 自2021年以来便有报道称GPT-4“即将推出” ,OpenAI公司CEO Sam Altman今年受StrictlyVC采访时表示GPT-4将在 “有信心可以安全且负责任地运行时”推出。外界此前也曾预期,GPT-4的推出或分阶段进行,例如GPT-3也是先开放给 合作伙伴、付费用户和学术机构,才在2022年底开放给公众。

在参数量上,针对有传言称GPT-4参数量将达到百万亿,OpenAI公司CEO Sam Altman予以否定。此外,AI专家Alberto Romero预测,GPT-4的重点在数据处理优化上,因此其使用门槛有望降低,我们预计训练成本的控制将带动其商业潜力 的增强。

展望:GPT-4—最新消息称推出在即、支持多模态

最新消息称GPT-4将于下周推出,支持多模态应用,开启通往人工通用智能之路。根据德国科技媒体“heise在线”报 道,当地时间3月9日,微软德国公司首席技术官Andreas Braun在名为“AI in Focus – Digital Kickoff”的活动中透露称 “将在下周推出GPT-4,它将是一个多模态模型,会提供完全不同的可能性——例如视频”。这意味着GPT-4可以管理不 同语言数据的输入和输出,也能够做到输出图像甚至视频。在活动上,微软AI技术专家对多模态AI的应用案例进行了介 绍,例如能够将电话呼叫的语音直接记录成文本,这为微软位于荷兰的一家大型客户节省500个工作小时/天。

GPT-4对多模态的支持使得外界对模型潜力的预期进一步强化,原因在于多模态感知是建立人工通用智能(AGI)的重要 一步,基于此能够执行人类水平的一般任务。

商业模式:C端推出订阅制会员,B端提供调用API接口

ChatGPT迅速走红,以订阅制服务B端、C端客户,成本控制下将有效加速商业化落地。ChatGPT自年初以来,持续出 圈,截至2023年1月末月活突破1亿,成为史上增长最快的消费者应用。考虑到计算资源所牵涉的庞大训练成本、运行成 本,ChatGPT的商业化路径已正在探索、明确中。

商业模式—1)C端:OpenAI发布ChatGPT Plus订阅计划,每月收费20美元,相较于免费版本,即便在高峰时段用户也 能正常访问ChatGPT,响应时间更快,可以优先使用新功能,有望引领AI技术变现新模式;2)B端:OpenAI发布 ChatGPT API,开发者可以将ChatGPT集成到产品中,价格为$0.002/1k token,相较于GPT-3.5降低90%,我们预计成 本控制后有望快速带动GPT相关应用爆发。根据微信公众号“智东西” ,生鲜电商Instacart、跨境电商Shopify、照片分 享应用Snap、单词背诵应用Quizlet等已率先接入ChatGPT API。

2.Transformer架构支撑GPT走向多模态,构筑AIGC领域核心基石

GPT采用的Transformer架构在NLP领域已跻身主流

GPT沿用主流Transformer模型,该模型采用自注意力机制,在NLP上表现优于RNN(循环神经网络)。2017年,谷歌 在《Attention is All You Need》中提出Transformer模型,可用于文本摘要、机器翻译等NLP任务。在NLP方面, Transformer模型的自注意力(self-attention)机制可以为输入序列中的任意位置提供上下文,进而模型能够一次性处理 所有输入数据,而非RNN一次只处理一个单词的情况,由此模型可以减少训练时间,能够在更大的数据集上进行训练。 目前,基于Transformer的预训练语言模型已成为NLP领域的主流。

Transformer也可用于CV领域,相较于CNN实现性能巨大提升

Transformer也可用于CV(计算机视觉)领域,表现出巨大的性能提升。CV领域此前更多由CNN(卷积神经网络)主 导,而Transformer凭借着自注意力机制,表现出了巨大的性能提升。根据微软亚洲研究院,Transformer在图像分类、物 体检测等任务中刷新了测评记录,例如2020年Transformer被首次应用于图像分类任务,结合海量的预训练数据,ViT在 ImageNet-1K的validation评测集上取得88.55%的准确率。Transformer也在视频动作识别、视觉自监督学习、图像复原、 图像分割等视觉任务中取得优异成绩。谷歌提出的ViT-MoE模型目前在参数量上领先,达到了150亿。

Transformer支撑下GPT有望走向多模态,构筑AIGC领域核心基石

GPT有望基于Transformer延伸至多模态,构筑AIGC核心基石,GPT-4或实现领跑。当前,基于Transformer的多模态学 习成为AI领域的研究热点,研究者们提出了大量的Transformer变体。鉴于Transformer具有较少的特定于模态的架构假 设,以及生成式预训练、大模型

版权声明: 发表于 2023年12月25日 pm12:15。
转载请注明:ChatGPT专题报告:GPT,大模型多模态应用展望 | ChatGPT资源导航

相关文章